Abstract

The vent shrimp Rimicaris exoculata thrives around many hydrothermal vent sites along the Mid-Atlantic Ridge (MAR), where it aggregates into dense swarms. In contrast to hydrothermal vent fields at the East Pacific Rise (EPR), where the biomass is dominated by tubeworms, clams, and mussels, this shrimp is one of the major animal species at MAR vents. These animals are found in the dynamic mixing interface between cold oxygenated seawater and hot, reduced hydrothermal vent fluid. The adaptation of this shrimp to the hostile deep-sea hydrothermal environment and its survival strategy has been investigated since their discovery at the TAG site in the late 1980s. Rimicaris exoculata is now known to colonize black smoker complexes along the MAR in the depth-range of 2,300-3,900 m (Rainbow, Broken Spur, TAG, Snake Pit, Logatchev, 5 S( Rimicaris cf exoculata). Although the presence of the Rimicaris genus was first believed to be restricted to the MAR, a related species, Rimicaris kairei, was found recently at the Central Indian Ridge (CIR) (Edmonds and Kairei vent field). This review summarizes the current knowledge of Rimicaris shrimp, focusing on their spatial and temporal distribution, chemical and thermal environment, as well as on possible nutrition strategies and behavioral aspects. Recent studies suggested that iron oxide encrusted bacteria hosted in the branchial chamber of R. exoculata from the Rainbow vent field (MAR) might rely on iron oxidation. Striking results on the occurrence and morphology of iron precipitates, as well as on bacterial-mineral interaction in the gill chamber, have lead to the hypothesis of an iron-based symbiosis between bacteria and the shrimp. Special attention is called to these issues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call