Abstract

Phytohormones from rhizobacterial origin have been linked to their phytostimulation potential. However, while studying the efficacy of plant growth promoting bacteria, focus has always been on a single hormone. The role of plant hormones often overlay and they mutually modulate their effect. In current study focus was on the role of two hormones (cytokinins and indole acetic acid) in phytostimulation by rhizobacteria. Endogenous rhizosphere bacteria were isolated and screened for the presence of phytohormones. Bacterial strains from three different genera (Pseudomonas, Bacillus and Azospirillum) were screened positive for cytokinins and IAA. Phytohormones were simultaneously determined in SPE purified bacterial extract by ultra performance liquid chromatography (UPLC) coupled to a tandem mass spectrometer through electrospray interface. Cytokinins and IAA were determined in positive and negative mode, respectively with MRM scan. Zeatin, zeatin riboside and dihydrozeatin riboside were detected and quantified in the selected strains. Significant positive correlation between cytokinins and IAA in bacterial culture and plant endogenous hormones (r = 0.933 and r = 0.983; P = 0.01, respectively) was observed. However, strains with high IAA to cytokinins ratio could hardly enhance in-planta cytokinins, indicating antagonistic relation between the two hormones. Significant correlation of cytokinin with shoot length (r = 0.797; P = 0.01), fresh weight (r = 0.685; P = 0.01) and dry weight (r = 0.704; P = 0.01) was reported under axenic conditions. Bacterial IAA was correlated negatively to root length (r = 0.853; P = 0.01) and positively correlated to the number of roots (r = 0.964; P = 0.01). In natural conditions maximum increase in spike length (33%), number of tillers (71%) and weight of seeds (39%) was documented at final harvest in bacterially inoculated plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.