Abstract

Reactive metal coatings have been frequently used on ceramic materials for various purposes. However, little work was done in the past to understand the interactions between coating and ceramic substrates and their effects on the mechanical properties of the ceramics. In this study, titanium coatings were applied to single-crystal (sapphire) and polycrystalline alumina to study the interface reactions. Also, the effect of the coating on the mechanical properties of the substrates was quantified in terms of modulus of rupture (MOR) in four-point bending strength. Reactions between the coating and the Al2O3-based substrates at 980°C caused the formation of a new phase, Ti3Al[O], and a significant decrease (15%–65%) in the MOR strength of the ceramic materials. This study showed that in polycrystalline alumina, interactions between titanium and the glassy grain-boundary phase in the ceramic materials were responsible for reduction in the MOR strength, while the effect of thermal expansion mismatch between titanium and the ceramic substrate appeared to be dominant for singlecrystal alumina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.