Abstract

A modified indentation technique has been used to measure the interfacial shear stress in a number of ceramic matrices containing silicon carbide fibers. It was shown that the frictional component of interfacial stress was essentially zero when matrix thermal expansion was lower than that of the fiber and increased linearly with thermal expansion mismatch when matrix thermal expansion was higher. The interfacial shear stress was lowered when the fibers were coated with BN. Lower matrix shear stresses resulted in a more extensive fiber pullout during the composite fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.