Abstract

In this work, the influences of the four factors including hydrogen bond acceptor (HBA) count (X1), MCF pore size (X2), drug loading degree (X3) and dissolution stirring rate (X4) as well as their cross-interactions for drug release behaviors were investigated. The factors were chosen from all drug release aspects consisting of drug, carrier, formulation and dissolution, respectively. A five-level four-factorial composite central design (CCD) was performed for the investigation with cumulative release over 1 h (Y1), cumulative release over 24 h (Y2) and rate constant k (Y3) as three dependent response variables. A series of MCFs (4MCF, 7MCF, 12MCF, 17MCF and 22MCF) with various pore diameters were synthesized to be applied as drug carriers, and five BCS II drugs including disulfiram (DIS), loratadine (LOR), celecoxib (CEL), metronidazole (MET) and nimodipine (NIM) were selected as model drugs possessing different numbers of HBAs. The morphologies, structures and pore size distributions of the MCFs were systematically studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption analysis (BET), and the drug loading samples were analyzed using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The release behavior was examined by in vitro dissolution. The interactions between the model drugs and the MCFs were analyzed in detail using response surface plots. The present work may provide some scientific references for selecting the appropriate mesoporous silica carrier for a specific drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.