Abstract

A drug release model based on mesocellular foam silica (MCF) for Biopharmaceutics Classification System (BCS) II drugs was conducted. A three-level two-factorial factorial design was carried out for the exploration of the influence of the pore size of MCF (X1) and drug-loading degree (X2) for drug release behaviors. Cumulative release in 1h (Y1), cumulative release in 24h (Y2), and rate constant k (Y3) were selected as dependent response variables. A series of MCFs (7MCF, 12MCF, and 17MCF) with arithmetic increased pore diameters was synthesized as drug carriers. The morphologies and structures of MCFs and pore size distributions were detected by scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption analysis. With celecoxib as a model drug, nine drug-loaded samples were prepared and further characterized by differential scanning calorimetry and X-ray diffraction analyses. The release behavior was examined by in vitro dissolution. Factorial design results demonstrated that cumulative release in 1h and the rate constant k were mainly affected by X2, while cumulative release in 24h was influenced by both X1 and X2. Furthermore, quadratic equations of Y1, Y2, and Y3 were conducted, respectively. This work was expected to provide some scientific references for designing specific drug delivery models with mesoporous silica carrier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.