Abstract
Recently, Pleurotus eryngii (P. eryngii) polysaccharide (PEP) has received a lot of attention from many researchers as the primary active substance. The PEP influences the gut microbiota in several ways, including the interaction of fermentation products with the intestinal mucus layer (IML) and intestinal epithelial cells. Herein, we characterized interactions between the IML and PEP after degradation by the gut microbes. Our results showed that fermented P. eryngii polysaccharide (FPEP) can interact with intestinal mucus (IM), and this interaction can reduce the degree of molecular aggregation of polysaccharides. At the same time, the fermentation time of FPEP also affects the interaction between the two. SEM showed that the FPEP solution tended to aggregate into larger particles, while with the addition of IM, the FPEP molecules were dispersed. Particle size measurements unveil substantial differences in the fermented polysaccharides' particle size between the group with supplementary IM (0 hours of fermentation: 485.1 ± 11.3 nm) and the group without IM (0 hours of fermentation: 989.33 ± 21.3 nm). Remarkably, within the group with added IM, the particle size reached its maximum at 24 hours of fermentation (585.87 ± 42.83 nm). Additionally, turbidity assessments demonstrate that, during the 12-hour interaction period, the 24-hour fermented polysaccharides consistently exhibit the highest OD values, ranging between 0.57 and 0.61. This work investigates the interaction between FPEP and IM, predicting the adhesion of polysaccharides to IM. Meanwhile, this provides a theoretical basis for further studies on the absorption and transport pathways of PEP and provides a novel research viewpoint on intestinal digestion and absorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.