Abstract

Granular activated carbon (GAC) filtration can be employed to synchronously quench residual H2O2 from the upstream UV/H2O2 process and further degrade dissolved organic matter (DOM). In this study, rapid small-scale column tests (RSSCTs) were performed to clarify the mechanisms underlying the interactions between H2O2 and DOM during the GAC-based H2O2 quenching process. It was observed that GAC can catalytically decompose H2O2, with a long-lasting high efficiency (>80% for approximately 50,000 empty-bed volumes). DOM inhibited GAC-based H2O2 quenching via a pore-blocking effect, especially at high concentrations (10 mg/L), with the adsorbed DOM molecules being oxidized by the continuously generated ·OH; this further deteriorated the H2O2 quenching efficiency. In batch experiments, H2O2 could enhance DOM adsorption by GAC; however, in RSSCTs, it deteriorated DOM removal. This observation could be attributed to the different ·OH exposure in these two systems. It was also observed that aging with H2O2 and DOM altered the morphology, specific surface area, pore volume, and the surface functional groups of GAC, owing to the oxidation effect of H2O2 and ·OH on the GAC surface as well as the effect of DOM. Additionally, the changes in the content of persistent free radicals in the GAC samples were insignificant following different aging processes. This work contributes to enhancing understanding regarding the UV/H2O2-GAC filtration scheme, and promoting the application in drinking water treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.