Abstract

Studying interactions between potential anticancer drugs and cell membrane models is of great interest to explore the capability of novel drugs in the development of anticancer treatments. Lipid membrane models are useful to understand cellular interactions and to discern drug mechanism action. Here, the interactions of curcumin, as a bioactive natural compound with anti-cancer properties, with both healthy and cancerous or tumor cell membrane models, based on Langmuir monolayers, have been studied. The healthy-cell membrane model is composed of cholesterol 67%, and saturated lipid dipalmitoylphosphatidylcholine 33%. The cancerous-cell-membrane-model is composed of a lower proportion of cholesterol, 25%, and unsaturated lipid sphingomyelin 75%. To compare their interaction with curcumin we report the compression isotherms registered for both lipid membrane models and curcumin in different proportions, their compression moduli and the thermodynamic interaction parameters. From this analysis, we evidence a destabilizing interaction between curcumin and the cancerous cell membrane model in comparison with the healthy one. This interaction is further visualized by micro-Brewster Angle and Atomic Force Microscopies. Our experiments show that the drug enhances cohesion in the healthy membrane model whereas it fluidifies the cancerous cell membrane model causing thermodynamic destabilization. These are useful results to improve the selectivity of the drug avoiding adverse side effects of most current anticancer therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call