Abstract
Abundances and interactions among biological control insects and their effects on target invasive plants were monitored within the flower heads and roots of diffuse knapweed, Centaurea diffusa, and in spotted knapweed, Centaurea stoebe, along the Colorado Front Range. Flower weevils, (Larinus species) and root-feeders (Cyphocleonus achates and Sphenoptera jugoslavica) were released on knapweed that already supported biological control gall flies (Urophora species). At a single monitoring site, seed production by C. diffusa declined from 4400 seeds m � 2 in 1997 to zero seeds m � 2 on the monitoring sites in 2006, while the flowering stem density of C. diffusa declined from a peak of almost 30 stems m � 2 in 2000 to zero stems m � 2 in 2006. The average abundance of Urophora and Larinus in flower heads fluctuated independently during the 2001–2006 interval, while the relative abundance of C. achates and S. jugoslavica in roots exhibited a weak inverse relationship that appeared driven by climate effects. The relative abundance of insects on a population of C. stoebe was monitored for five years as Larinus species and C. achates became established on spotted knapweed that already supported Urophora species. Spotted knapweed seed production on our monitoring site declined from 4600 seeds m � 2 in 2003 to zero seeds m � 2 in 2006. Unlike C. diffusa, substantial numbers of rosettes of C. stoebe remained present. Larinus consumed almost all Urophora encountered in C. diffusa, and consumed about 40% of the Urophora in co-infested flower heads of C. stoebe (ca. 10–15% of the total Urophora population). No negative correlations between the relative densities of flower head and root-feeding insects were observed. The effects of these insects on target plants have produced results consistent with the ‘cumulative stress hypothesis’ for biological control of Centaurea species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.