Abstract

We develop the analytical method of field momenta for analyzing the dynamics of optical vector solitons in photorefractive nonlinear media. First, we derive the effective evolution equations for the parameters of multi-component solitons composed of incoherently coupled beams and investigate the soliton internal oscillations associated with the relative motion of the soliton components. Then, we apply this method for analyzing the vector soliton scattering by a nonlinear interface. In particular, we show that a vector soliton can be reflected, transmitted, captured, or split into separate components, depending on the initial energy of its internal degree of freedom. The results are verified by direct numerical simulations of spatial optical solitons in photorefractive nonlinear media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.