Abstract
We theoretically evaluated binding energies (Eb's) between various gas molecules and the Cu center open metal site (Cu-OMS) of Cu paddle-wheel units, [Cu2(O2CR)4] (R = H, Me, or Ph) using density functional theory (DFT) and MP2-MP4. The optimized geometry of the model system [Cu2(O2CPh)4] agrees with the experimental structure. The Eb of CO with [Cu2(O2CH)4] is only slightly different between the open-shell singlet and triplet states. The calculated Eb decreases in the order MeNC > H2O > MeCN > C2H4 > C2H2 > CO > CO2 > N2 > CH4 > H2. The trend is discussed in terms of the electrostatic interaction energy (ES), exchange repulsion energy (EX), and charge-transfer (CT) + polarization (Pol) interaction energy at the Hartree-Fock level and the electron correlation effect. The ES increases linearly with an increase in Eb, while the EX decreases linearly with an increase in Eb. These relationships indicate that the ES compensates for the EX. In other words, the Eb does not depend on the sum of ES and EX, which corresponds to the static energy. The electron correlation effect contributes little to the above-mentioned decreasing order of Eb. The total Eb roughly increases with an increase in the CT+Pol term, suggesting that the CT+Pol term plays important roles in determining the trend of Eb. The shift of the stretching frequency of adsorbed gas molecules on the Cu-OMS is reproduced well by the DFT calculation with the model system [Cu2(O2CH)4(L)2] (L = gas molecule). We found that the positive charge on the Cu significantly contributes to the shift in the end-on coordination gas molecules such as CO, MeNC, MeCN, and N2. Although the shift has been generally discussed in terms of donation and back-donation, the present result indicates that the electrostatic potential field in the porous coordination polymer should be considered in the discussion of the frequency shift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.