Abstract
In this paper, the oscillation of two spark-generated bubbles placed on a vertical column in close proximity to a confined free surface is considered. The confined free surface is accorded by the top opening of different configurations. These configurations include (i) a centrally perforated horizontal flat plate ( $${\theta=90^{\circ})}$$ , (ii) vertically placed cylinder ( $${\theta=0^{\circ})}$$ and (iii) nozzle ( $${\theta >0^{\circ})}$$ . The main objective of the present work is to study the effects of key parameters such as the nozzle geometry, the locations of the energy input (i.e., initial position of the bubbles with respect to each other and relative to the free surface) on the dynamics of the two bubbles and the free surface. It was found that the lifetime of the upper bubble decreases from the vertical cylinder to the flat plate case. In addition, by reducing the inter-bubble distance, the lifetime of the upper bubble becomes longer and the repulsion between two bubbles during the expansion phase is stronger. Finally, by reducing the upper bubble-free surface distance, the repulsion between two bubbles during expansion phase increases, the tendency of the upper bubble to rebound and initiate another oscillation cycle decreases, and the amplitude of elevation of the free surface increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.