Abstract

In the present work, the oscillation of a spark-created bubble near a confined water–air interface and the ensuing droplet generation and ejection are studied numerically using the boundary element method. The interface is accorded by the top opening of either one of the following symmetrical configurations, which are distinguished by the value of angle between their vertical symmetry axis and lateral wall (i.e., θ): (i) a centrally perforated horizontal flat plate (θ = 90°) and (ii) vertically placed cylinder (θ = 0°), nozzle (θ > 0°) and diffuser (θ < 0°). Furthermore, the influences of the effective parameters such as the strength parameter (i.e., the intensity of local energy input), the bubble-free surface distance (standoff distance) and the nozzle size on the bubble dynamics and droplet formation and ejection processes are investigated. It was found that the moment at which the bubble attained its maximum volume was advanced as θ increased. In addition, by decreasing θ the attraction of the bubble toward the free surface during its expansion phase and its migration from the free surface during its contraction phase became stronger. Furthermore, for the nozzle case, by increasing θ, the volume of the droplet was increased. It was also found that by increasing the strength parameter, the volume of the droplet increased and its pinch-off happened earlier. Finally, as the standoff distance was increased, the volume of the droplet increased and its pinch-off was delayed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.