Abstract

The interaction between irisflorentin (IFR) and bovine serum albumin (BSA) in physiological buffer (pH = 7.4) was investigated by fluorescence quenching technique and UV/vis absorption spectroscopy. The results of fluorescence titration revealed that IFR could strongly quench the intrinsic fluorescence of BSA through a dynamic quenching procedure. The apparent binding constants K A and number of binding sites n of IFR with BSA were obtained by fluorescence quenching method. The thermodynamic parameters, enthalpy change (Δ H θ ) and entropy change (Δ S θ ), were calculated to be 18.45 kJ mol −1 >0 and 149.72 J mol −1 K −1 >0, respectively, which indicated that the interaction of IFR with BSA was driven mainly by hydrophobic forces. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance r between donor (BSA) and acceptor (IFR) was calculated to be 3.88 nm based on Förster’s non-radiative energy transfer theory. The results of synchronous fluorescence spectra showed that binding of IFR with BSA can induce conformational changes in BSA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.