Abstract

This study investigates the interaction between tebuconazole and bovine serum albumin (BSA) in a physiological buffer (pH = 7.4) using the fluorescence quenching method to obtain the apparent binding constants (K) and number of binding sites (n) in the interaction between tebuconazole and BSA. The results revealed that tebuconazole can quench the intrinsic fluorescence of BSA through a static quenching procedure. It also shows that the thermodynamic parameters of enthalpy change (ΔH) and entropy change (ΔS) are negative, indicating that the interaction of tebuconazole with BSA is mainly driven by van der Waals forces and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance of r between the donor (BSA) and acceptor (tebuconazole) was calculated to be 0.68 nm based on Forster’s non-radiative energy transfer theory. Analysis of synchronous fluorescence, three-dimensional fluorescence and circular dichroism (CD) spectra demonstrates that tebuconazole can induce conformational changes of BSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call