Abstract

The frequency response of a 37 MHz bulk LiNbO3 surface acoustic wave (SAW) filter with a 200-nm-thick ZnO overlayer exhibited a downshift in the frequency with ultraviolet (UV) light due to acoustoelectric interactions between the photo-generated carriers in the semiconducting ZnO and the surface acoustic waves. In contrast, a 36 MHz ZnO thin film SAW delay-line with insulating ZnO films exhibited an upshift in the frequency. The response was more pronounced at higher harmonics (130–315 MHz) and was attributed to changes in the elastic/dielectric properties in the upper surface layer of ZnO. A linear change in the frequency with UV intensity shows immense applicability for wireless ultraviolet sensor applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.