Abstract
We employed contact alloying in the range 1000–1860°С to study the reaction specifics between SiC and Al2O3−(t + m)ZrO2(Y2O3) oxide composition. Real-time experiments with photographic recording of the changing size and shape of the Al2O3−(t + m)ZrO2(Y2O3) sample on a SiC ceramic substrate showed that Al2O3−(t + m)ZrO2(Y2O3) compositions react with the silicon carbide substrate in the range 1720–1860°С to melt and penetrate into (impregnate) the substrate. X-ray powder diffraction patterns were measured for samples taken from the contact area of the oxide composition with SiC directly on the substrate and in a chipped-off 1-mm-deep near-surface layer. ZrС, Al2Y4O9, and Al3.21Si0.47 were formed in the contact area via redox reactions involving oxide melt, in addition to 6H-SiC, Si and Al2O3, t-ZrO2 phases, which are the initial components of the substrate and oxide composition, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have