Abstract

SnO2−x films were prepared by reactive thermal and e-beam evaporation of Sn on alumina substrates and by post deposition thermal treatment. X-ray diffraction measurements found that films are tin dioxide (SnO2) phase with small amounts of SnO phase. The surface conductivity of films was measured in air and in presence of H2S, H2 and C2H5OH vapors at four sensor operating temperatures of 433–493 K. The resistance of SnO2−x films decreases on exposure to H2S but shows no change with hydrogen and ethanol. H2S response decreases with rise in sensor temperature while both response and recovery times improve. H2S signal enhances with increase in resistivity of SnO2−x coatings. Our experiments conclude that increase in film conductance is due to chemical reaction between H2S and SnO2−x surface and there is little or no role of interaction of gas molecules with surface adsorbed charged oxygen species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.