Abstract
Accurate measurement of atmospheric reactive mercury (RM) presents analytical challenges due to its reactivity and ultra-trace concentrations. In the last decade, use of the University of Nevada, Reno – Reactive Mercury Active System (RMAS) for RM measurements has increased, since it has been shown to be more accurate than the industry standard, the Tekran 2537/1130/1135 system. However, RMAS measurements also have limitations, including long time resolution and sampling biases associated with membranes used for RM sampling. We therefore investigated the use of higher sampling flow rates to reduce sampling time and tested alternative membrane materials using both ambient air sampling and controlled laboratory experiments with a gaseous oxidized mercury (GOM) calibrator. Results indicated that increasing the RMAS sampling flow had a negative impact on determined RM concentrations. RM concentrations at 2 L min−1 were 10% and 30–50% lower than at 1 L min−1 in spring/summer and winter, respectively. However, the chemical composition of RM captured on membranes was not impacted by the increased flow rate. Membranes currently used in the RMAS performed better than numerous alternatives with similar composition, retaining Hg more efficiently. Both ambient air sampling and laboratory experiments revealed that membranes designed to retain only particulate-bound mercury (PBM) also retained significant amounts of GOM. PBM membranes based on borosilicate glass designs retained more than 70% of GOM.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have