Abstract

The present article comprises a theoretical study of structures and energetics of the lowest energy conformers of peroxyformic acid (PFA) and its hydrated variants, viz. PFA...(H2O)n (n = 1-4), at the molecular level. We have employed two different ab initio quantum chemical methods, viz. restricted Hartree-Fock (RHF) and the second-order Møller-Plesset (MP2) perturbation theory with the basis sets 6-31G(d,p) and 6-311++G(2d,2p). Modifications in the structure as well as vibrational frequencies of PFA brought about by successive addition of H2O molecules are also discussed. Cooperativity of hydrogen bonding in these clusters can be gauged through a detailed many body interaction energy analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call