Abstract

This work has a focus on NiSi as a possible metallic contact for aggressively scaled complementary metal oxide semiconductor devices. As the bulk work function of NiSi lies close to the middle of Si bandgap, the Schottky barrier height (SBH) of NiSi is rather large for both electron (∼0.65eV) and hole (∼0.45eV). Different approaches have therefore been intensively investigated in the literature aiming at reducing the effective SBH: dopant segregation (DS), surface passivation (SP), and alloying, in order to improve the carrier injection into the conduction channel of a field-effect transistor. The present work explores DS using B and As for the NiSi∕Si contact system. The effects of C and N implantation into Si substrate prior to the NiSi formation are examined, and it is found that the presence of C yields positive effects in helping reduce the effective SBH to 0.1–0.2eV for both conduction polarities. A combined use of DS or SP with alloying could be considered for more effective control of effective SBH, but an examination of undesired compound formation and its probable consequences is necessary. Furthermore, an analysis of the metal silicides that have a small “intrinsic” SBH reveals that only a very small number of them are of practical interest as most of the silicides require either a high formation temperature or possess a high specific resistivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.