Abstract

Interactions of naproxen (NAP) with amorphous, randomly methylated β-cyclodextrin at a degree of substitution per anhydroglucose unit of 1.8 (RAMEB) and with crystalline heptakis-(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) were studied in aqueous solution and in the solid state using, respectively, phase-solubility analysis (at 25 °C, 37 °C and 47 °C) and differential scanning calorimetry (DSC) supported by X-ray powder diffractometry. RAMEB and DIMEB displayed similar solubilizing and complexing abilities towards NAP, suggesting analogous inclusion modes of the drug in the host cavity in aqueous solution. Differences were instead observed in interactions in the solid state, where the amorphizing capacity of RAMEB toward NAP (evaluated by DSC) was about twice that of DIMEB at each drug-to-carrier ratio. Assuming that inclusion complexation is also involved in solid-state interactions, molecular modelling accounted for the experimental results in terms of structural features of DIMEB, i.e. the particular inwards orientation of O-6-C-8 groups of three alternate glucoses on the primary hydroxyl side which hampers a deep penetration of NAP in the DIMEB cavity in the solid state. On the contrary, no obstruction of the cavity apparently occurs with RAMEB due its noncrystalline state. The aqueous dissolution rate of NAP from NAP-RAMEB and NAP-DIMEB blends containing 0.59, 0.73, 0.85, and 0.92 mass fraction of carrier linearly increased at decreasing drug-to-carrier ratios. The improvement was 5 to 20 times (from powders) and 50 to 200 times (from discs) the dissolution rate of NAP alone for both carrier. Therefore the choice of the amorphous RAMEB in pharmaceutical formulations can be recommended mainly for economic reasons, though the anhydrous and non-hygroscopic nature of crystalline DIMEB might be of particular advantage in case of moisture sensitive formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.