Abstract

We discuss the problem of magnetic-dipolar oscillations combined with microwave resonators. The energy density of magnetic-dipolar or magnetostatic (MS) oscillations in ferrite resonators is not the electromagnetic-wave density of the energy and not the exchange energy density as well. This fact reveals very special behaviors of the geometrical effects. Compared to other geometries, thin-film ferrite disk resonators exhibit very unique interactions of MS oscillations with the cavity electromagnetic fields. MS modes in a flat ferrite disk are characterized by a complete discrete spectrum of energy levels. The staircase demagnetization energy in thin-film ferrite disks may appear as noticeable resonant absorption of electromagnetic radiation. Our experiments show how the environment may cause decoherence for magnetic oscillations. Another noticeable fact is experimental evidence for eigen-electric-moment oscillations in a ferrite disk resonator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.