Abstract

The gas phase electron impact spectroscopy has been used to study the relative efficiency of excitation into singlet states and energies of singlet-triplet transitions for two electroactive organic materials, anthracene and biphenyl-containing diphenylethynyl derivatives. The probability of the lowest singlet-triplet transition in anthracene-containing molecule was found to be much higher than that in anthracene which is connected with triple bonds. No noticeable contribution of the triple bonds into singlet spectra of the studied molecules was observed. There are a number of intense transitions in the range higher than 10 eV. The optical spectrum calculated using the density functional theory is in good agreement with experimental electron energy loss and optical absorption spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call