Abstract

A Monte Carlo (MC) simulation is described and used to calculate the energy distribution spectra of backscattered electrons from Al and Si. For the simulations, elastic scattering cross sections are calculated by numerically solving the Dirac equation in a central field. Inelastic scattering cross sections are computed within the dielectric response theory developed by Ritchie, and by Tung et al. Extension from the optical case to non-zero momentum transfer is done according to Ritchie and Howie. To evaluate surface and bulk contributions to the spectra, the Monte Carlo model treats the surface excitations according to the Werner differential surface and volume excitation probability theory. The Monte Carlo calculations are compared with the experimental reflection electron energy loss (REEL) spectra acquired in our laboratory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call