Abstract
For oral drug delivery the stability of liposomes against intestinal bile salts is of key importance. Here, asymmetric flow field-flow fractionation (AF4) coupled to multi-angle laser light scattering (MALLS) and a differential refractive index (dRI) detector was employed to monitor structural re-arrangement of liposomes upon exposure to the model bile salt taurocholate. For comparison, a conventional stability assay was employed using a hydrophilic marker and size exclusion chromatography (SEC) to separate released from liposome-entrapped dye.Calcein-containing liposomes with and without cholesterol were compared in terms of their in vitro stability upon exposure to bile salts by separating liposomes from co-existing colloidal species emerging after stress test using AF4/MALLS/dRI. Dynamic light scattering (DLS) was utilized in parallel.Our AF4/MALLS/dRI results suggested that exposure of egg-phospholipid liposomes to bile salts at physiological concentrations led to the formation of two new species of colloidal associates, likely (mixed) micelles. Subjecting cholesterol-containing liposomes to the same bile media did not lead to any new colloidal structures, indicating increased stability of these liposomes. Our SEC-based release assay largely confirmed these findings, indicating that AF4/MALLS/dRI is a suitable technique for prediction of in vitro oral stability of liposomal formulations. Moreover, the powerful AF4/MALLS/dRI technique appears promising to improve the understanding of the underlying mechanisms during bile salt-induced liposomal breakdown.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have