Abstract

Thymosin beta 4 is a major actin sequestering peptide in vertebrate cells and plays a role in the regulation of actin monomer/polymer ratio. Thymosin beta 9 and thymosin beta met9 are minor variants of thymosin beta 4. The possible function of these peptides has been investigated by comparing the actin binding properties of these beta-thymosins. Thymosin beta 9 and thymosin beta met9 were found to inhibit polymerization of ATP-actin with identical KDs of 0.7-0.8 microM (as compared to 2 +/- 0.3 microM for thymosin beta 4); like thymosin beta 4, they bound to ADP-G-actin with a 100-fold lower affinity than to ATP-G-actin. The interaction of thymosin beta 4 and thymosin beta met9 with G-actin was weakened 20-fold upon oxidation of methionine-6 into methionine sulfoxide. Binding of thymosin beta 4 to G-actin was accompanied by a 15% increase in the fluorescence intensity of actin tryptophans, and a 10 nm emission blue shift. Methionine-6 played an important role in this effect. The fluorescence change was used to monitor the kinetics of thymosin beta 4 binding to G-actin in the stopped-flow. The reaction was bimolecular, with association and dissociation rate constants of approximately 1.5 microM-1 s-1 and 2 s-1 respectively, under physiological conditions. The possible physiological significances of methionine-6 oxidation and of the relatively slow binding kinetics in regulating thymosin beta 4 function in vivo is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.