Abstract

The Escherichia coli RecA protein is involved in SOS induction, DNA repair, and homologous recombination. In vitro, RecA protein serves as a co-protease to cleave LexA repressor, the repressor of the SOS regulon; in addition, RecA protein promotes homologous pairing and DNA strand exchange, steps important to homologous recombination and DNA repair. To determine if these two functions of RecA protein are competing or parallel, the effect of uncleavable LexA S119A repressor on RecA protein-dependent activities was examined. LexA S119A repressor inhibits both the single-stranded DNA (ssDNA)-dependent ATP hydrolysis and DNA strand exchange activities of RecA protein. As for wild-type LexA repressor (Rehrauer, W. M., Lavery, P. E., Palmer, E. L., Singh, R. N., and Kowalczykowski, S. C. (1996) J. Biol. Chem. 271, 23865-23873), inhibition of ATP hydrolysis is dependent upon the presence of E. coli single-stranded DNA binding (SSB) protein, arguing that LexA repressor affects the competition between RecA protein and SSB protein for ssDNA binding sites. In contrast, inhibition of DNA strand exchange activity is SSB protein-independent, suggesting that LexA S119A repressor blocks a site required for DNA strand exchange. These results imply that there is a common site on the RecA protein filament for secondary DNA and LexA repressor binding and raise the possibility that the recombination and co-protease activities of the RecA protein filament are competitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.