Abstract

Interaction between duplex T4 DNA and a slightly cross-linked cationic gel of poly(diallyldimethylammonium chloride) in aqueous media was studied by fluorescent microscopy. While short DNA chains such as plasmid DNAs penetrate into the gel and form a phase of polyelectrolyte complex with the cationic network, the genomic giant DNA chains of T4 phages form complexes only on local areas of the gel surface. The DNA/gel complex exhibited different characteristic morphologies depending on the conditions for preparing the complex, such as the DNA concentration, flux of the solution, and surface geometry of the gel: (1) In the interaction with the flat surface of film-type gel, compact round objects, which reflected a condensed state of single DNA chains, were observed. (2) In the interaction with partly dried gel, a characteristic pattern similar to propagating waves was formed on the gel surface. (3) When flux is generated for a concentrated DNA solution, long oriented fiberlike structures were formed, which consisted of ensembles of chains. The interaction with small pieces of mechanically decomposed gel leads to complete covering of their surface by the DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call