Abstract
Seedless barberry fruit is native small fruit in Iran. To examine the impact of various drying methods and storage on the biochemical attributes (Vitamin C, Anthocyanin, Phenol, pH, TA), color index (a*, b*, L*, ab, and Chroma), drying time, and fruit microstructure (by SEM) of seedless barberry (Berberis vulgaris var. asperma), and effective moisture diffusivity coefficient (Deff), specific energy consumption (SEC), energy efficiency (EE) of the dryers, this experiment was performed. Drying treatments include microwave (100, 170, and 270 W), oven (60 and 70 °C), cabinet (50 and 70 °C), shade, sun, and fresh samples (control) and storage 6 months after drying (in polyethylene packaging and at a temperature of 5–10 °C). Results showed minimum and maximum drying times (50 min and 696 h), were related to microwave (270 W) and shade methods, respectively. The highest color values were observed in fruits treated with control, shade and sun treatments and the lowest values were observed in cabinet (70 °C) methods. According to the SEM results, microwave significantly affected surface structure of the dried sample compared to others. The findings indicated that the use of artificial drying methods than natural methods (sun and shade) cause a more significant reduction in color indexes, while vitamin C, soluble solids, and anthocyanin were significantly maintained at a high level. Storage reduced anthocyanin content of fruits almost 12%. Moreover, it was discovered EE and SEC values varied in the range of 1.16–25.26% and 12.20–1182 MJ/kg, respectively. Deff values were higher in microwave 270 W.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.