Abstract

The transient interaction of counter-streaming super-sonic plasma flows in a dipole magnetic dipole is studied in a laboratory experiment. First quasi-stationary flow is produced by -pinch and forms a magnetosphere around the magnetic dipole, while laser beams focused at the surface of the dipole cover launch a second explosive plasma expanding outward from the inner dipole region. The laser plasma is energetic enough to disrupt the magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but an order of magnitude larger than the vacuum dipole field at considered distances. Because no compression of the magnetic field at the front of the laser plasma was observed, the realised interaction is different from previous experiments and theoretical models of laser plasma expansion into a uniform magnetized background. It was deduced based on the obtained data that, while expanding through the inner magnetosphere, laser plasma picks up a magnetised shell formed by background plasma and carries it for large distances beyond the previously existing magnetosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call