Abstract
Coal-direct CLHG is a novel hydrogen production technology with inherent CO2 capture. Potassium-decorated Fe2O3/Al2O3 oxygen carrier (OC) has been proved to be a potential OC for the technology. However, the ash in the coal could influence the OC performance. In this work, the effect of ash addition on the reactivity, the morphology structure and phase composition of OC, and the potassium migration in the reduction stage were investigated. Furthermore, the effect of OC on the ash fusion temperature was discussed. Results indicated that the OC reactivity had no significant change when SM (Shenmu) ash addition was less than 1% in the reduction stage and decreased when the addition was more than 2%. In the steam oxidation stage, the H2 yield varied between 5.80–5.57 mmol/g when the SM ash addition was less than 10% and decreased to 4.31 mmol/g when the addition was 40%. FeO could react with SiO2 deriving from coal ash to form Fe2SiO4, which could cause the loss of Fe and the OC sintering; K2CO3 could react with silicon-aluminum minerals which could cause the potassium loss. The ash with high CaO content had a less negative effect on the OC reactivity. With the increase of SM ash addition, the potassium in OC decreased, the potassium in char increased and the volatile potassium decreased after the reduction stage. After the OC addition, the deformation temperature decreased from 1242 °C to 1114 °C in the weak reduction atmosphere while increased from 1162 °C to 1300 °C in the air atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.