Abstract

Molten calcium magnesium alumina-silicates (CMAS) represent a challenge for the current generation of rare earth silicates environmental barrier coatings (EBCs). Their interaction with ytterbium disilicate (Yb2Si2O7) free-standing coatings deposited using thermal spraying technique has been studied to further understand the reaction mechanisms. Three coatings, deposited with different porosity levels and thickness, representing traditional EBCs (<3% porosity and ∼350 μm thickness) and abradable coatings (∼20% porosity and 500–1000 μm thickness) were exposed to CMAS at 1350 °C. The results show that higher porosity levels facilitates CMAS infiltration in the first hour of exposure, in combination with infiltration through the inter-splat boundaries. Preferential dissolution of ytterbium monosilicate (Yb2SiO5) takes place, forming a 10–15 μm Ca2Yb8(SiO4)6O2 apatite layer as the reaction product, producing a network of fine porosity (<10 μm) as the inter-splat boundary material is consumed. After exposure for 48 h, CMAS has completely infiltrated all three coatings, with apatite crystals present across the coatings, up to a depth of ∼550 μm. Despite the extensive CMAS infiltration and apatite formation, no damage could be observed in any of the coatings, providing a promising first step for environmental barrier abradable coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call