Abstract

cis-Pt(NH3)2Cl2 (cisplatin) is an antitumor drug with many severe toxic side effects including enzymatic structural changes associated with its mechanism of action. This study is designed to examine the interaction of cisplatin drug with ribonuclease A (RNase A) in aqueous solution at physiological pH, using drug concentration of 0.0001 mM to 0.1 mM with final protein concentration of 2% w/v. Absorption spectra and Fourier transform infrared (FTIR) spectroscopy with its self-deconvolution, second derivative resolution enhancement and curve-fitting procedures were used to characterize the drug binding mode, association constant and the protein secondary structure in the cisplatin-RNase complexes. Spectroscopic results show that at low drug concentration (0.0001 mM), no interaction occurs between cisplatin and RNase, while at higher drug concentrations, cisplatin binds indirectly to the polypeptide C=O, C-N (via H2O or NH3 group) and directly to the S-H donor atom with overall binding constant 5.66 × 103M−1. At high drug concentration, major protein secondary structural changes occur from that of the α-helix 29% (free enzyme) to 20% and β-sheet 39% (free enzyme) to 45% in the cisplatin-RNase complexes. The observed structural changes indicate a partial protein unfolding in the presence of cisplatin at high drug concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.