Abstract
cis-Pt(NH(3))(2)Cl(2) (cisplatin) is an antitumor drug with many severe toxic side effects including enzymatic changes associated with its mechanism of action. This study was designed to examine the interaction of cisplatin drug with the Na(+), K(+)-dependent adenosine triphosphatase (Na,K-ATPase) in H(2)O and D(2)O solutions at physiological pH, using drug concentrations of 0.1 microM to 1 mM. UV absorption spectra and Fourier transform infrared difference spectroscopy with its self-deconvolution, second derivative resolution enhancement and curve-fitting procedures were applied to characterize the drug binding mode, the drug binding constant and the protein secondary structure in the cisplatin-ATPase complexes. Spectroscopic evidence showed that at low drug concentration (0.1 microM), cisplatin binds mainly to the lipid portion of the enzyme, whereas at higher drug contents, the Pt cation interaction is through the polypeptide C==O and C-N groups with overall binding constant of K=1.93 x 10(4) M(-1). At high cisplatin concentration (1 mM), drug binding results in protein secondary structural changes from that of the alpha-helix 19.8%; beta-pleated 25.6%; turn 9.1%; beta-antiparallel 7.5% and random 38%, in the free Na,K-ATPase to that of the alpha-helix 22.2%; beta-pleated 23.2%; turn 9.4%; beta-antiparallel 2.2% and random 43%, in the cis-Pt-ATPase complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.