Abstract

The response of ciliate communities to cyanobacterial bloom was investigated in a shallow, hypertrophic reservoir in Slovakia, central Europe. Seasonal dynamics of ciliate communities corresponded negatively with course of water bloom formation. The highest numbers and abundances of ciliate species occurred during the spring season when cyanobacterial bloom was not fully developed, while there was an abrupt decrease in both numbers and abundances at the beginning of summer when water bloom culminated. Cyanobacterial blooming thus significantly lowered diversity and equitability of ciliate communities: many rare and sporadic species disappeared and few common taxa flourished and dominated. Nonetheless, these leading ciliates formed a functionally diverse assemblage whose members showed mostly positive contemporaneous and only rarely time-shifted interactions. There were fine filter feeders (Cinetochilum margaritaceum, Dexiotricha granulosa, Paramecium caudatum and Spirostomum teres) grazing heterotrophic bacteria and picocyanobacteria, omnivorous fine to coarse filter feeders (Frontonia leucas) as well as hunters (Coleps hirtus, Holophrya teres and Loxophyllum helus) looking for an individual prey. Also a comparatively rich, anaerobic coenosis comprising various bacterivorous armophoreans and plagiopyleans, developed at the bottom of the reservoir. Our study documents that ciliates form functionally diverse communities with potential to control cyanobacterial blooms in hypertrophic reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call