Abstract

The room temperature adsorption of N 2O on the clean Si(001)2 × 1 surface was used as a model system in an Auger electron spectroscopy (AES) study presented in this paper. Earlier experimental and recent theoretical work have provided evidence that this reaction evolves in discernible stages each exhibiting different adsorption geometries for the oxygen atom. In this AES study the intensity ratio of the KL 1L 1 and KL 2,3L 2,3 O Auger transitions, α, was measured as a function of the fractional oxygen coverage, θ, and compared with our calculated intensity ratios and binding energy measurements of the O 1s photoelectron from literature. As a result we have found, for the first time, that α(θ) can be related to a specific adsorption geometry in the submonolayer range. Moreover, we have found experimental evidence for an intermediate stable O adsorption state on the dimer at low coverage (θ⩽ 0.2 monolayer), as proposed earlier from theoretical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.