Abstract
Milpas are traditional Mesoamerican agroecosystems maintained with ancestral practices. Maize landraces are grown in polyculture, creating highly productive and diverse ecosystems. Recent studies suggest that milpas maintain beneficial plant-microbe interactions that are probably absent in modern agroecosystems; however, direct comparisons of the microbiome of plants between traditional and modern agroecosystems are still needed. Here, we studied seed-endophytic bacterial communities from native maize landraces from milpas and hybrid varieties. First, we quantified the abundance of culturable endophytic microbes; next, we assessed pairwise antagonistic interaction networks between bacterial isolates; finally, we compared bacterial community structure by 16S rRNA amplicon sequencing. We found that seeds from native maize landraces harbour a higher endophytic microbial load, including more bacterial strains with antagonistic activity against soil-borne bacteria, and overall harbour more diverse bacterial communities than the hybrid varieties. Noteworthy, most of the seed-endophytic strains with antagonistic activity corresponded to Burkholderia spp. that were only found in native maize seeds, through both culture-dependent and independent strategies. Altogether, our results support that crop modernization alters the functions and structure of plant-associated microbes; we propose native maize from milpas could serve as a model for understanding plant-microbe interactions and the effect of modernization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have