Abstract
We derive a low-energy effective model of metallic zigzag carbon nanotubes at half filling. We show that there are three important features characterizing the low-energy properties of these systems: the long-range Coulomb interaction, umklapp scattering, and an explicit dimerization generated by interactions. The ratio of the dimerization induced gap and the Mott gap induced by the umklapp interactions is dependent on the radius of the nanotube and can drive the system upon increasing dimerization strength from a Haldane spin-liquid phase through a quantum phase transition with $\mathrm{SU}{(2)}_{1}$ quantum symmetry to a dimerized phase. We consider the physical properties of the phases on either side of this transition, which should be relevant for realistic nanotubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.