Abstract

We consider the problem of writing Glimm type interaction estimates for the hyperbolic system $u_t + A(u) u_x = 0.\qquad\qquad (0.1)$ The aim of these estimates is to prove that there is Glimm-type functional $Q(u)$ such that Tot.Var.$(u) + C_1 Q(u)$ is lower semicontinuous w.r.t. $L^1-$ norm, $\qquad\qquad (0.2)$ with $C_1$ sufficiently large, and $u$ with small BV norm. In the first part we analyze the more general case of quasilinear hyperbolic systems. We show that in general this result is not true if the system is not in conservation form: there are Riemann solvers, identified by selecting an entropic conditions on the jumps, which do not satisfy the Glimm interaction estimate (0.2). Next we consider hyperbolic systems in conservation form, i.e. $A(u) = Df(u)$. In this case, there is only one entropic Riemann solver, and we prove that this particular Riemann solver satisfies (0.2) for a particular functional $Q$, which we construct explicitly. The main novelty here is that we suppose only the Jacobian matrix $Df(u)$ strictly hyperbolic, without any assumption on the number of inflection points of $f$. These results are achieved by an analysis of the growth of Tot.Var.$(u)$ when nonlinear waves of (0.1) interact, and the introduction of a Glimm type functional $Q$, similar but not equivalent to Liu's interaction functional [11].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.