Abstract

In the canonical supermolecular approach, calculations of interaction energies for molecular clusters involve a calculation of the whole cluster, which becomes expensive as the cluster size increases. We propose a novel approach to this task by demonstrating that interaction energies of such clusters can be constructed from those of small subclusters with a much lower computational cost by applying progressively lower-level methods for subsequent terms in the many-body expansion. The efficiency of such "stratified approximation" many-body approach (SAMBA) is due to the rapid convergence of the many-body expansion for typical molecular clusters. The method has been applied to water clusters (H(2)O)(n), n = 6, 16, 24. For the hexamer, the best results that can be obtained with current computational resources in the canonical supermolecular method were reproduced to within about one tenth of the uncertainty of the canonical approach while using 24 times less computer time in the many-body expansion calculations. For (H(2)O)(24), SAMBA is particularly beneficial and we report interaction energies with accuracy that is currently impossible to obtain with the canonical supermolecular approach. Moreover, our results were computed using two orders of magnitude smaller computer resources than used in the previous best calculations for this system. We also show that the basis-set superposition errors should be removed in calculations for large clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call