Abstract

The underlying reasons for the poor convergence of the venerated many-body expansion (MBE) for higher-order response properties are investigated, with a particular focus on the impact of basis set superposition errors. Interaction energies, dipole moments, dynamic polarizabilities, and specific rotations are computed for three chiral solutes in explicit water cages of varying sizes using the MBE including corrections based on the site-site function counterpoise (or "full-cluster" basis) approach. In addition, we consider other possible causes for the observed oscillatory behavior of the MBE, including numerical precision, basis set size, choice of density functional, and snapshot geometry. Our results indicate that counterpoise corrections are necessary for damping oscillations and achieving reasonable convergence of the MBE for higher order properties. However, oscillations in the expansion cannot be completely eliminated for chiroptical properties such as specific rotations due to their inherently nonadditive nature, thus limiting the efficacy of the MBE for studying solvated chiral compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.