Abstract

We consider dynamic, i.e., frequency-dependent, correlations in non-condensed ultracold atomic Bose gases. In particular, we consider the single-particle correlation function and its power spectrum. We compute this power spectrum for a one-component Bose gas, and show how it depends on the interatomic interactions that lead to a finite single-particle relaxation time. As another example, we consider the power spectrum of spin-current fluctuations for a two-component Bose gas and show how it is determined by the spin-transport relaxation time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call