Abstract

Solitary bees comprise around 90% of bee species, playing an essential role in both wild and crop plant pollination. Bee populations are jeopardized by different global change pressures such as climate change and landscape transformation. However, the interactive effects of global change components have been little explored, especially for solitary bees. We conducted a factorial experiment using artificial nest-traps to analyse the combined effect of climate warming and landscape transformation on Osmia bicornis reproduction and offspring body size. The number of bee cocoons increased with temperature and flower abundance in the landscape. However, the sex ratio was biased towards males with warming, especially at low flower abundances. Male body size increased with temperature. Conversely, female body sizes showed strong interactive responses, increasing in size with high flower abundance in the landscape, but only at low temperatures. The abortion rate of larvae and parasitization were not significantly affected by neither flower abundance nor temperature. Because the body size of females in O. bicornis is key for the next generation's progeny success, our results indicate that the simultaneous exposure to a shortage of floral resources and high temperatures may have adverse direct fitness effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call