Abstract

The tumor suppressor p53 regulates cell cycle arrest and apoptosis by transactivating several genes that are critical for these processes. The transcriptional activity of p53 is often regulated by post-translational modifications and its interactions with various transcriptional coactivators. Here we report a physical interaction between the N-terminal transactivation domain (TAD) of p53 and the C-terminal DNA-binding domain of positive cofactor 4 (PC4CTD). Using NMR spectroscopy, we showed that residues 35–57 (TAD2) interact with PC4. 15N,1H HSQC and fluorescence competition experiments indicated that TAD binds to the DNA-binding site of PC4. Hepta-phosphorylation of the TAD peptide increased its binding affinity. Computer modeling of the p53N-PC4 complex revealed several important interactions that are reminiscent of those in the single-stranded DNA-PC4 complex. The ubiquitous nature of the acidic transactivation domain of p53 in mediating interactions with several transcription cofactors is also manifested as a DNA mimetic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.