Abstract

Mesoscopic electric circuits can exhibit a large number of effects relevant to quantum mechanics, quantum electrodynamics and quantum statistics. The topic presented here can be identified as an analog of conventional cavity quantum electrodynamics, where the quantum objects are multilevel atoms and quantized optical fields (photons), namely, a theoretical subject called “cavity-circuit quantum electrodynamics”, where the atoms are replaced with quantum mesoscopic circuits, will be developed. We will study the quantum characteristics of the interaction between the quantum mesoscopic circuits and the quantized electromagnetic field at microwave frequencies. These issues include quantum entangled eigenstates of two coupled mesoscopic circuits, time evolution of the circuit energy quanta (governed by the time-dependent Schrodinger equation) and entanglement transfer between external photons and mesoscopic circuit energy quanta. Since there is inevitable electromagnetic interaction such as mutual capacitance and inductance coupling between two neighboring circuits, the quantum effects resulting from the aforementioned quantized circuit coupling would unavoidably affect the relevant processes in quantum computing devices and hence they deserve consideration in some issues of quantum information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.