Abstract
The most recently identified metabotropic glutamate receptor (mGluR), type 8 mGluR (mGluR8), has been identified functionally as a presynaptic autoreceptor in rod photoreceptors. This study analyzed the mechanism of action underlying mGluR8 activity and modulation of the cytosolic Ca2+ concentration in mouse photoreceptors. The cytosolic Ca2+ concentration of acutely isolated rod photoreceptors was monitored optically with microspectrofluorimetry and in the presence of modulators of G protein activity. mGluR8 activation by the group III mGluR agonists l-2-amino-4-phosphonobutyrate and l-serine-O-phosphate or the physiological ligand l-glutamate produced a decrease in influx of extracellular Ca2+ into the cytosol. Pretreatment of isolated rod photoreceptors with the G protein uncoupler suramin or pertussis toxin, which inactivates Gi/o/z proteins and Gt protein/transducin, or a G protein betagamma subunit-inhibiting peptide abolished this activity. Preincubation of cells with cholera toxin (CTX), an activator of Gs protein, had no effect. These results suggest that the function of mGluR8 of modulating the cytosolic Ca2+ concentration and thereby potentially the release of neurotransmitter from rod spherules, the axon terminal systems of rod photoreceptors, is mediated by a pertussis toxin-sensitive G protein potentially via the betagamma subunit. The absence of Go and Gz proteins, as reported previously, implies a novel potential interaction between Gi2 and/or Gt protein/transducin and mGluR8 in photoreceptors. These results have potential implications for the regulatory function and pharmacologic targeting of mGluR8 in photoreceptors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have