Abstract
Combined organic and inorganic fouling is a primary barrier constraining the performance of reverse osmosis (RO) membrane. In this work, we conducted a systematic study focusing on the synergetic fouling effects of silica and humic acid (HA) in RO process, and found the critical silica concentration where the fouling pattern changed qualitatively. When the silica concentration was lower than 6 mM at a typical HA concentration of 50 mg·L−1, no severe fouling was observed, while silica reaching this critical point could cause severe synergetic fouling with HA. Concentrated silica above the critical point acted as the prior foulant with marginal fouling effect caused by HA. A variety of solutions and surface-based characterizations were performed to elucidate the synergistic fouling responsibility for silica and HA. Our study suggests that the carboxylic groups from HA formed hydrogen bonds with silica hydrate, inducing silica adsorption onto HA aggregates at low silica particle concentrations. The HA network was bridged together to form large foulants due to the silica-silica interaction above the silica critical concentration. These mechanisms were further confirmed by molecular dynamics simulations. This study provides an in-depth insight into the combined organic-inorganic fouling and can serve as a guideline to optimize feed conditions in order to mitigate fouling of RO in wastewater reusing industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.