Abstract
Activation of adhesion receptor GPR110 by the endogenous ligand synaptamide promotes neurogenesis, neurite growth, and synaptogenesis in developing brains through cAMP signal transduction. However, interacting partners of GPR110 and their involvement in cellular function remain unclear. Here, we demonstrate using chemical crosslinking, affinity purification, and quantitative mass spectrometry that GPR110 interacts with the tight junction adhesion protein occludin. By removing non-specific partners by comparing the binding proteins of GPR110 WT and an inactive mutant exhibiting impaired surface expression, occludin was distinguished as a true binding partner which was further confirmed by reciprocal co-immunoprecipitation assay. Deletion of GPR110 in mice led to the disruption of blood-brain barrier (BBB) and reduced occludin phosphorylation at Y285 in the brain. The Y285 phosphorylation increased upon the ligand-induced activation of GPR110. These data suggest an important role of GPR110-occludin interaction in BBB function and association of previously unknown GPR110-dependent occludin phosphorylation at Y285 with BBB integrity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.